Commit 5324e68c authored by Alex Fout's avatar Alex Fout

script which generates an embedding based on training data.

parent e89ac907
import numpy as np
from matplotlib import pyplot as plt
from itertools import cycle
from config import pid_noConcussion, pid_3stepProtocol, pid_testRetest, pid_concussion, feature_functions, epoch_size, \
embedding_args, pid_testlist
from patient import Patient
from embedding import Embedding
def centroid(data):
length = len(data)
x_sum = np.sum(data[:, 0])
y_sum = np.sum(data[:, 1])
return np.array([float(x_sum)/length, float(y_sum)/length])
# get training data from un-concussed individuals
noCon_pats= []
step_pats = []
retest_pats = []
con_pats =[]
# for lst, pat_list in zip([pid_noConcussion, pid_3stepProtocol, pid_testRetest, pid_concussion], [noCon_pats, step_pats, retest_pats, con_pats]):
#for lst, pat_list in zip([pid_noConcussion], [noCon_pats]):
for lst, pat_list in zip([pid_testlist], [noCon_pats]):
for pid in lst:
print("Processing pid: {}".format(pid))
p = Patient(pid)
# get examples from pre_test
if p.pre_test is not None:
p.pre_test.get_examples(feature_functions, epoch_size=epoch_size)
# get examples from post_test
if p.post_test is not None:
post = p.post_test.get_examples(feature_functions, epoch_size=epoch_size)
if p.pre_test is not None and p.post_test is not None:
# create training data
train_data = np.vstack([p.pre_test.examples for p in noCon_pats if p.pre_test is not None] +
[p.post_test.examples for p in noCon_pats if p.post_test is not None])
# create and train embedding
emb = Embedding(**embedding_args)
# visualize embedding
colors = cycle(['r', 'b', 'g', 'y'])
pre_post_distances = []
for p in noCon_pats:
color =
pre_emb = emb.embed(p.pre_test.examples)
post_emb = emb.embed(p.post_test.examples)
plt.plot(pre_emb[:, 0], pre_emb[:, 1], linestyle='None', marker="x", color=color, + "_pre")
plt.plot(post_emb[:, 0], post_emb[:, 1], linestyle='None', marker="o", color=color, + "_post")
# calculate centriods and plot a line
pre_cent = centroid(pre_emb)
post_cent = centroid(post_emb)
plt.plot([pre_cent[0], post_cent[0]], [pre_cent[1], post_cent[1]], '-', linewidth=4, color=color)
# record distance
pre_post_distances.append(np.linalg.norm(post_cent - pre_cent))
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment